Convergence of perturbation series for unbounded monotone quasiperiodic operators

نویسندگان

چکیده

We consider a class of unbounded quasiperiodic Schrödinger-type operators on ℓ2(Zd) with monotone potentials (akin to the Maryland model) and show that Rayleigh–Schrödinger perturbation series for these converges in regime small kinetic energies, uniformly spectrum. As consequence, we obtain new proof Anderson localization more general than before such operators, explicit convergent expansions eigenvalues eigenvectors. This result can be restricted an energy window if potential is only locally one-to-one. A modification this approach also allows non-strictly have flat segment, under additional restrictions frequencies.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiable Perturbation of Unbounded Operators

If A(t) is a C1,α-curve of unbounded self-adjoint operators with compact resolvents and common domain of definition, then the eigenvalues can be parameterized C1 in t. If A is C∞ then the eigenvalues can be parameterized twice differentiable. Theorem. Let t 7→ A(t) for t ∈ R be a curve of unbounded self-adjoint operators in a Hilbert space with common domain of definition and with compact resol...

متن کامل

Many Parameter Hölder Perturbation of Unbounded Operators

If u 7→ A(u) is a C0,α-mapping, for 0 < α ≤ 1, having as values unbounded self-adjoint operators with compact resolvents and common domain of definition, parametrized by u in an (even infinite dimensional) space, then any continuous (in u) arrangement of the eigenvalues of A(u) is indeed C0,α in u. Theorem. Let U ⊆ E be a c∞-open subset in a convenient vector space E, and 0 < α ≤ 1. Let u 7→ A(...

متن کامل

Many Parameter Lipschitz Perturbation of Unbounded Operators

If u 7→ A(u) is a C1,α-mapping having as values unbounded selfadjoint operators with compact resolvents and common domain of definition, parametrized by u in an (even infinite dimensional) space then any continuous arrangement of the eigenvalues u 7→ λi(u) is C0,1 in u. If u 7→ A(u) is C0,1, then the eigenvalues may be chosen C0,1/N (even C0,1 if N = 2), locally in u, where N is locally the max...

متن کامل

On the Convergence of Maximal Monotone Operators

We study the convergence of maximal monotone operators with the help of representations by convex functions. In particular, we prove the convergence of a sequence of sums of maximal monotone operators under a general qualification condition of the Attouch–Brezis type.

متن کامل

Denjoy-carleman Differentiable Perturbation of Polynomials and Unbounded Operators

Let t 7→ A(t) for t ∈ T be a C -mapping with values unbounded operators with compact resolvents and common domain of definition which are self-adjoint or normal. Here C stands for C (real analytic), a quasianalytic or non-quasianalytic Denjoy-Carleman class, C∞, or a Hölder continuity class C. The parameter domain T is either R or R or an infinite dimensional convenient vector space. We prove a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2022

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2022.108647